lution had occurred. The mixture was then heated at reflux for 0.5 h and cooled. The solvent was evaporated, and the residue was recrystallized from absolute ethanol to give salt 5 as white crystals: 0.25 g, 75%; $^1\mathrm{H}$ NMR (CD_3OD) δ 2.62 (m, SCH_2CH_2CH_2N, 2 H), 2.82 (s, SCH_3, 3 H), 3.60 (t, J=5.7 Hz, SCH_2CH_2CH_2N, 2 H), and 4.63 (t, J=5.7 Hz, SCH_2CH_2CH_2N, 2 H). Anal. Calcd for C_6H_9IN_2S_3: C, 21.69; H, 2.74; N, 8.43. Found: C, 21.85; H, 2.83; N, 8.30.

X-ray Structure Determination of 4. X-ray data of 4 were collected by using a pale yellow crystal of dimensions $0.08 \times 0.15 \times 0.38$ mm on an Enraf-Nonius CAD4 diffractometer equipped with Cu K α radiation ($\lambda = 1.541\,84$ Å) and a graphite monochromator. Crystal data are as follows: $C_5H_6N_2S_3$, fw = 190.3, orthorhombic space group P_{nma} , a=13.241 (2) Å, b=7.080 (1) Å, c=8.330 (2) Å, V=780.9 (4) ų, Z=4, $D_{calcd}=1.619$ g cm⁻³ at T=25 °C, $\mu=79.6$ cm⁻¹. One octant of data having $4^\circ<2\theta<150^\circ$ was collected by $\omega-2\theta$ scans. Data reduction included corrections for background, Lorentz, polarization, and absorption. Absorption corrections were based on psi scans, and the minimum relative transmission coefficient was 82.9%. Of 875 unique data, 749 had $I>3\sigma(I)$ and were used in the refinement.

The structure was solved by direct methods in the centrosymmetric space group, yielding a model in which the molecule lies on the crystallographic mirror plane. Two of the C atoms of the six-membered heterocyclic ring are disordered into half-populated positions related by the mirror. C(4) lies 0.52 Å from the mirror; thus the two half-atoms are sufficiently resolved to allow anisotropic refinement. C(5) lies only 0.37 Å from the mirror and was refined anisotropically. All other non-hydrogen atoms were refined anisotropically, while H atoms were neither located nor included in the refinement. Least squares was based on F with weights $w=\sigma^{-2}(F_{\rm o})$ and varied 63 parameters. At convergence, $R=0.046,\,R_w=0.055,$ and maximum residual density was 0.47 e Å-3. Refinement of ordered models in noncentrosymmetric space group P_{na21} led to high correlations and chemically unreasonable, divergent results.

Acknowledgment. We thank the Italian Ministry of Education for partial support of this work.

Registry No. 3, 105785-10-2; 4, 119366-95-9; 5, 119366-96-0.

Supplementary Material Available: The packing of the molecules of 4 in the unit cell and tables of the anisotropic thermal parameters, bond distances, bond angles, and torsion angles (5 pages). Ordering information is given on any current masthead page.

Additions and Corrections

Vol. 53, 1988

Mohamad B. Ksebati, Francis J. Schmitz,* and Sarath P. Gunasekera. Pouosides A-E, Novel Triterpene Galactosides from a Marine Sponge, Asteropus sp..

Pages 3919–3920. Figure 1 consists of three parts: 1a, 1b, and 1c. The legend under Figures 1 is for Figure 1a. The legends for Figures 2 and 3 should be part of the legend for Figure 1 and should be listed as Figure 1b and Figure 1c, respectively. Figure 2 legend should read "Results from long-range ¹H/¹³C correlation experiments." Figure 3 legend should read "Partial Structures."

Shiv Kumar and Nelson J. Leonard*. Nucleoside Annelating Agents: Structures and Electrophilic Behavior of the Products Formed with N-Chlorocarbonyl Isocyanate.

Page 3959. The last sentence on the page should read: "The annelation of unsaturated six-membered rings onto pyrimidine and purine bases and nucleosides has also been reported. 4.29,67" Footnote 67 should be added:

(67) Olomucki, M.; Le Gall, J. Y.; Colinart, S.; Durant, F.; Norberg, B.; Evrard, G. Tetrahedron Lett. 1984, 25, 3471. Thomé, F.; Blois, F.; Olomucki, A.; Olomucki, M. Eur. J. Biochem. 1987, 162, 433. Roques, P.; Olomucki, M. Eur. J. Biochem. 1987, 167, 103. Roques, P.; Olomucki, M. Biochem. Pharmacol. 1988, 37, 1823.

Kazuaki Sukata. Efficient Synthesis of Silyl Azides Using Sodium Azide Impregnated on Amberlite XAD Resin.

Page 4868. The captions for Figures 1 and 2 should be interchanged.